

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Raman Spectrum of the Split v_4 Mode of CO_3^{2-} Ions in Aragonite

V. Rives-arnau^a; G. Munuera^a; J. M. Criado^a

^a Departamento de Química Inorgánica Facultad de Química, Universidad de Sevilla, Sevilla, Spain

To cite this Article Rives-arnau, V. , Munuera, G. and Criado, J. M.(1979) 'Raman Spectrum of the Split v_4 Mode of CO_3^{2-} Ions in Aragonite', Spectroscopy Letters, 12: 10, 733 — 738

To link to this Article: DOI: 10.1080/00387017908069199

URL: <http://dx.doi.org/10.1080/00387017908069199>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

RAMAN SPECTRUM OF THE SPLIT ν_4 MODE
OF $\text{CO}_3^=$ IONS IN ARAGONITE

Key words: Raman spectra, Splitting modes, Aragonite

V. Rives-Arnau, G. Munuera and J. M. Criado

Departamento de Química Inorgánica
Facultad de Química
Universidad de Sevilla
Sevilla (Spain)

INTRODUCTION

Infrared and Raman spectra of $\text{CO}_3^=$ ions are different in the two crystallographic forms of CaCO_3 — Calcite and Aragonite — owing to their different site symmetries. Due to this fact, i.r. has been used to assess the reversible Calcite \rightleftharpoons Aragonite transformation which occurs upon grinding of CaCO_3 , and much work has been done in this field in the last few years⁽¹⁻⁴⁾. In the present paper data are reported on Raman spectra of Calcite and Aragonite forms of CaCO_3 produced by the above mechanical procedure.

EXPERIMENTAL

The samples studied were the same previously used by Criado et al. ⁽⁵⁾, and correspond to CaCO_3 (D'Herbe Analytical), ground for periods of 2 to 24 h in a planetary mill. Samples ground for 0, 4.5 and 8 h were selected since X-ray analysis ⁽⁵⁾ showed that the unground sample was rich in Calcite, the sample ground for 8 h was rich in Aragonite, and the sample ground for 4.5 h contained a mixture of both.

The Raman spectra were recorded using a triple monochromator laser-Raman Cary 82 spectrophotometer coupled to a Spectra-Physics 165-03 Argon ion laser tube; the line at 514.5 nm, with a power of ca. 800 mW at the tube output, was used with the following recording conditions: spectral bandwidth 3 cm^{-1} , scan speed $0.3 \text{ cm}^{-1} \text{ s}^{-1}$, pen period 10 s, sensitivity 2 Kcps/f.s.d., with expanded abscissa scale.

For comparison, i.r. spectra were recorded using KBr discs containing ca. 2% CaCO_3 and a Perkin-Elmer 621 double beam spectrophotometer under standard conditions, giving a resolution better than 2 cm^{-1} .

RESULTS AND DISCUSSION

Fig. 1 shows the i.r. and Raman spectra of the three samples in the range $800-600 \text{ cm}^{-1}$, where the $\sqrt{4}$ mode of $\text{CO}_3^=$ ions appears. The Calcite-rich specimen (a) gives a single band at 715 cm^{-1} in Raman which coincides with the i.r. band at

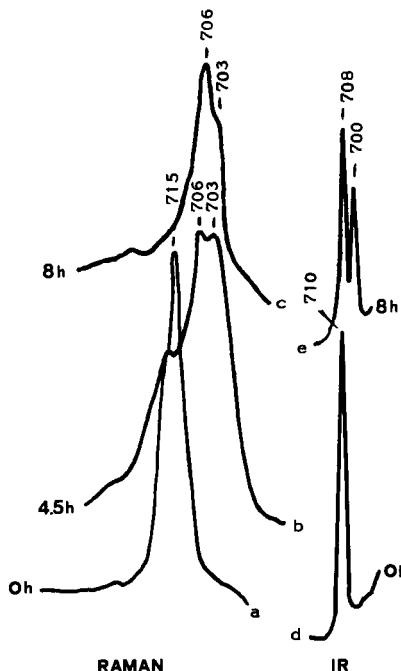


FIG. 1. Raman and i.r. spectra of unground (a, d) and ground (b, c, e) Calcium Carbonate. Spectra a and d correspond to a Calcite-rich sample, spectra c and e to an Aragonite-rich sample and spectrum b corresponds to a sample containing a mixture of both.

710 cm^{-1} . The Aragonite-rich specimen (c) produces a split mode at 706 and 703 cm^{-1} that corresponds to the two bands at 708 and 700 cm^{-1} in the i.r. spectrum of this sample. Sample (b), formed by a mixture of Calcite and Aragonite, gives spectra which are intermediate between those of samples (a) and (c).

Site group analysis predicts that the site symmetry of the $\text{CO}_3^{=}$ ion in Calcite and Aragonite must be respectively D_3 and C_s , while symmetry in the free ion is $D_{3h}^{(6)}$. The correlation chart for D_{3h} , D_3 , and C_s in Fig. 2 shows how the existence of

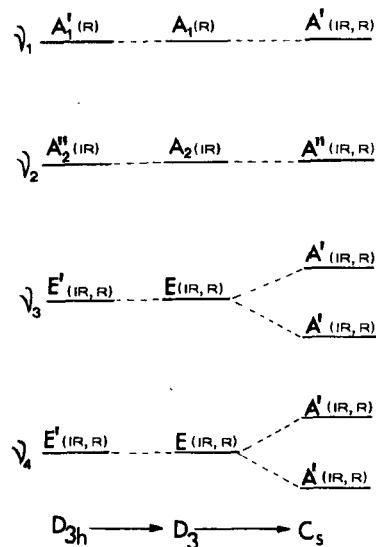


FIG. 2. Correlation chart for D_{3h} (free $\text{CO}_3^=$ ion), D_3 (Calcite) and C_s (Aragonite). IR and R stand for infrared and Raman active modes, respectively.

Aragonite (C_s symmetry) and/or Calcite (D_3 symmetry) in a specimen of CaCO_3 can be ascertained from the number of bands in the i.r. or Raman spectrum of the sample. In particular, splitting of the ν_4 mode is of diagnostic value for qualitative detection of Calcite and/or Aragonite.

Fig. 3 collects data of i.r. and Raman recently compiled by Nakamoto⁽⁷⁾ for the vibrational modes of the free $\text{CO}_3^=$ ion, Calcite, and Aragonite. In the i.r. spectrum of Aragonite, this author reports a split band at 1504 and 1492 cm^{-1} , corresponding to the ν_3 mode, and another split band at 711 and 706 cm^{-1} , which corresponds to the ν_4 mode. On the contrary, for Raman spectra of the same compound, this author does not report

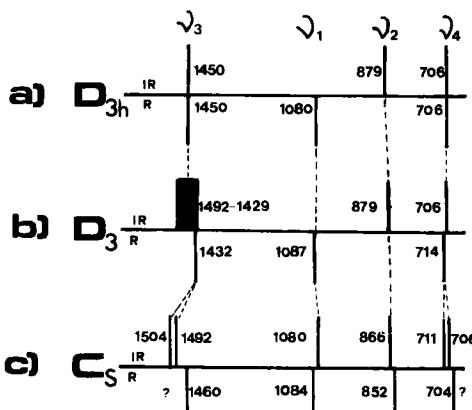


FIG. 3. Position of the infrared and Raman bands for (a)free CO₃²⁻ ion, (b)Calcite, and (c)Aragonite. (Data from ref. 7).

any splitting in either of the two modes (i.e., only single bands at 1460 and 704 cm⁻¹ are reported), in spite of the prediction from the correlation chart above that both modes should be split and i.r. and Raman actives.

Raman spectra in Fig. 1 show that, in agreement with the X-ray data⁽⁵⁾, the original Calcite-rich sample only shows a single band at 715 cm⁻¹ (spectrum a) corresponding to the $\sqrt{4}$ mode, which coincides with the i.r. band at 710 cm⁻¹ (spectrum b) and values in the literature⁽⁷⁾ (i.r.:706 cm⁻¹;Raman:714 cm⁻¹). When the sample is ground for 4.5 h additional bands at 706 and 703 cm⁻¹ develop which must be ascribed to the new Aragonite phase detected by X-ray. After 8 h of grinding, the bands at 706 and 703 cm⁻¹ were the only ones present in the spectrum, while X-ray indicated an almost complete transformation of the specimen into Aragonite. These two bands must be ascribed to the two A' modes of the Aragonite arising from the $\sqrt{4}$ mode,

that was originally degenerated both in the free $\text{CO}_3^{=}$ ion (D_{3h}) and in the Calcite form (D_3). This is confirmed by the i.r. spectrum included in Fig. 1 (spectrum e), where the original band at 710 cm^{-1} has disappeared and two bands at 708 and 700 cm^{-1} are now recorded, which closely matches the i.r. data reported in the literature⁽⁷⁾ (711 and 706 cm^{-1}).

Although Nakamoto⁽⁷⁾ and Rao⁽⁴⁾, among others, have previously reported the split $\tilde{\nu}_4$ mode in the i.r. spectra of Aragonite (pure and doped), to the authors' knowledge, the Raman spectrum of the split $\tilde{\nu}_4$ mode is here reported for the first time.

REFERENCES

1. M. Subba Rao; Indian J. Chem., 11, 280 (1973).
2. R. B. Gammage, H. F. Holmes, E. L. Fuller, Jr., D. R. Glasson; J. Col. Interface Sci., 47, 350 (1974).
3. R. B. Gammage, D. R. Glasson; J. Col. Interface Sci., 55, 396 (1976).
4. C. R. M. Rao, P. N. Mehrotra; Canad. J. Chem., 56, 32 (1978).
5. J. M. Criado, J. M. Trillo; J. C. S. Faraday I, 961 (1975).
6. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd. edition, John Wiley & Sons, New York, 1978, p. 92.
7. Ref. 6, p. 129.

Received 8-01-79

Accepted 8-28-79